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Potential role of dietary lipids in the prophylaxis  
of some clinical conditions

Urvashi Bhagat, Undurti N. Das

A b s t r a c t

An imbalance of dietary lipids may potentially have a significant role in the 
pathobiology of some chronic diseases. Public health dietary fat recommen-
dations have emphasized that low saturated fat, high monounsaturated fat, 
and high polyunsaturated fat with a lower w-6 to w-3 fatty acid ratio intake 
are necessary for normal health. However, such universal recommendations 
are likely to be hazardous, since the outcome of recommended lipid intake 
may depend on the consumption of other important dietary constituents 
that have an important role in the metabolism of lipids. In addition, con-
sumption of fatty acids as per the individually tailored specific requirements 
in the context of other nutritional factors may have the potential to stabilize 
hormones, mood and sleep, and minimize adverse events. In support of this 
proposal, we review various factors that influence fatty acid metabolism, 
which need to be taken into consideration for appropriate utilization and 
consequently prevention of various diseases.

Key words: prevention, fatty acids, antioxidants, phytochemicals, 
inflammation, cytokines, unsaturated fatty acids, prostaglandins.

Introduction

Both qualitative and quantitative imbalances in the intake and me-
tabolism of dietary fats have been implicated in a number of chronic dis-
eases including cardiovascular diseases (CVD), obesity, diabetes mellitus 
(DM), and rheumatoid arthritis (RA) [1–5]. Thus far, in order to overcome 
these imbalances, the suggested preventative solutions have focused 
on the delivery of one or more lipids in the form of supplementation 
of w-3 fatty acids [2], conjugated-linoleic acid (LA) [6], and g-linolenic 
acid [7]; and other recommendations include enhanced use of certain 
oils, such as olive oil and canola oil, in order to deliver greater amounts 
of monounsaturated fatty acids and a-linolenic acid [1, 2]. Reduction in 
saturated fatty acid consumption has also been recommended [1, 3, 4]. 
Though these broad health recommendations appear to have reduced 
the risk of some diseases, they are not uniformly beneficial and in fact, 
may actually enhance the risk of some disease. For instance, it was re-
ported that replacing dietary saturated fat with w-6 linoleic acid, for the 
secondary prevention of coronary heart disease and death, showed no 
evidence of cardiovascular benefit [8]. This may be interpreted to mean 
that other dietary components that are essential for its (LA) beneficial ac-
tion also need to be obtained to derive the beneficial action of increased 
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consumption of LA. It is noteworthy that LA is ox-
idized to form oxidized LA metabolites (OXLAMs) 
that are the most abundant oxidized fatty acids in 
oxidized low density lipoprotein, which are poten-
tially more atherogenic than unmodified low den-
sity lipoprotein. This implies that various factors 
that have a modulatory influence on LA metabo-
lism such as antioxidants [9–12], phytochemicals 
[13–18], minerals [19], gender [20, 21], age [22], 
and genetics [23] play a significant role in bring-
ing about its (LA) beneficial action. Thus, there are 
many variables that modulate the metabolism of 
various fatty acids. Furthermore, it will be difficult 
for consumers to calibrate on a daily basis the de-
mands of the body for various fatty acids. This is 
so since the requirements of various biologically 
active unsaturated fatty acids change depend-
ing on age, gender, and various life style factors. 
It is possible that there could exist differences in 
the requirements of various fatty acids and their 
co-factors even among members of the same 
family. In view of this, it is important to evolve 
precise personalized yet broad based dietary lipid 
program(s) that are easy to implement to prevent 
various diseases. It is the purpose of this review 
to discuss various factors that influence fatty acid 
metabolism based on which guidelines to develop 
customized lipid programs can be drawn and rec-
ommended.

Metabolism of essential fatty acids 

Dietary lipids include fatty acids, sterols, carot-
enoids, and vitamins A  and E. A  good review of 
the terminology, sources, digestion, metabolism, 
and physiological actions of lipids is provided  
by Ratnayake and Galli [24]. In summary, linoleic 
acid (LA, C18:2) and a-linolenic acid (ALA, C18:3) 
are essential fatty acids (EFA) since humans can-
not synthesize them de novo but they are essential 
for survival. Though both LA and ALA are biolog-
ically active [1, 24], they need to be converted to 
their long-chain metabolites to gain benefit of their 
full potential [25, 26]. Linoleic acid, the w-6 EFA, is 
elongated and desaturated to give rise to its long-
chain metabolites: g-linolenic acid (GLA, C18:3), 
dihomo-gamma-linolenic acid (DGLA, C20:3), and 
arachidonic acid (AA, C20:4). Dihomo-gamma-lin-
olenic acid forms the precursor of 1 series pros-
taglandins (PGs), whereas AA is the precursor of 
2 series PGs, thromboxanes (TXs), and 4 series 
leukotrienes (LTs). On the other hand, ALA is the 
precursor of its long-chain metabolites eicosapen-
taenoic acid (EPA, C20:5) and docosahexaenoic 
acid (DHA, C22:6) of the n-3 family. Eicosapentae-
noic acid gives rise to 3 series PGs and TXs, and  
5 series LTs. LA, GLA, DGLA, AA, ALA, EPA, and DHA 
are all polyunsaturated fatty acids (PUFA), while 
only LA and ALA are EFAs. All EFAs are also PUFAs 

but all PUFAs are not EFAs. Eicosanoids (PGs, TXs 
and LTs) have many actions and are involved in sev-
eral physiological and pathological processes, some 
of which include: blood vessel constriction, dilation, 
blood pressure regulation, platelet aggregation, 
and modulation of inflammation, etc. [24, 27]. In 
general, eicosanoids derived from AA have more 
potent actions compared to those derived from 
EPA, though there are exceptions to this generaliza-
tion [28]. Additionally, AA, EPA, and DHA are precur-
sors to lipoxins, resolvins, and neuroprotectins that 
have potent anti-inflammatory actions [24]. Poly-
unsaturated fatty acids and their products includ-
ing eicosanoids, lipoxins, resolvins and protectins 
modulate a number of biological functions by their 
ability to form an active component of cell mem-
branes and by influencing pinocytosis, ion channel 
regulation and gene expression [24, 27].

a-Linolenic acid, LA, and oleic acid (OA) under-
go oxidative desaturation by the same set of en-
zymes – delta-6-desaturase (Δ6) and delta-5-de-
saturase (Δ5) – to give rise to their respective 
– PUFAs [29, 30]. Among the three fatty acids, 
ALA is preferentially desaturated, LA second, and 
OA third (ALA > LA > OA) [29, 31]. This affinity 
of the Δ6 and Δ5 to their substrate has import-
ant therapeutic implications since changes in the 
availability and/or increases or decreases in one 
substrate can have a profound effect on the me-
tabolism of the other substrates. In view of this, 
consumption of the right balance of dietary fat-
ty acids is important and this constituted a vig-
orous debate as to what is the right proportion 
or ratio of n-3, n-6 and n-9 to be consumed for 
their optimal utilization and usefulness in the 
body. A  number of studies have discussed the 
importance of maintaining a  balance between 
w-6 and w-3 fatty acids in human nutrition for 
optimal function of various tissues specifically 
taking into consideration the eicosanoids pro-
duced from w-6 and w-3 fatty acids due to their 
significant divergent actions especially in inflam-
mation, among other reasons [32–34]. The pres-
ent pattern of consumption indicates that the 
ratio between w-6-to-w-3 ratios is ~15–17 : 1 in 
Western diets, which has been cited as one of 
the important dietary factors that has led to the 
increase in the incidence of modern chronic dis-
eases such as insulin resistance, atherosclerosis, 
type 2 diabetes mellitus and cancer [2, 33]. 

For example, studies have shown that adult 
human brain consumes AA and DHA at rates of 
17.8 and 4.6 mg/day, respectively (ratio – 3.87 : 1),  
respectively [35]. Further, it was shown that 
most adult human tissue contains approximately  
10 times AA as compared to DHA [36]. This demon-
strates that AA requirement is 4 to 10 times that 
of DHA. Furthermore, it has been shown to be 
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equally competitive, LA and ALA should be in the 
ratio of 14 : 1 [32]. Based on this logic the ra-
tio between w-6-to-w-3 of 15–17 : 1 in diets is 
not the problem, the problem is the other factors 
that influence the metabolism of w-6 and w-3.

A  substantial number of studies revealed 
additional complexity in the metabolism of es-
sential fatty acids and their long-chain metabo-
lites besides the complexity that exists as a  re-
sult of changes in the ratios among fatty acids. 
For instance, previously we noted that when 
Sprague-Dawley rats (200–220 g) were fed a fat-
free semi-synthetic diet supplemented with 10% 
(by weight) of different combinations of evening 
primrose oil (EPO), a rich source of LA and g-linole-
nic acid, and polepa (POL), a marine oil rich in eicos-
apentaenoic (EPA) and docosahexaenoic (DHA) 
acids (the combinations of supplement were 9% 
EPO-1% POL, 8% EPO-2% POL, 7% EPO-3% POL,  
6% EPO-4% POL and 5% EPO-5% POL) it was 
observed that animals fed higher proportions of 
POL consistently contained higher levels of DGLA  
(p < 0.05) and lower levels of AA (p < 0.05). Thus, an 
inverse relationship between AA/DGLA ratio and 
EPA levels was found to exist (r = –0.765 in plasma 
and –0.792 in liver [37]. In a  similar fashion, an 
interaction may occur between ALA/EPA ratio and 
AA levels. Such an interaction among various n-3 
and n-6 fatty acids makes it difficult to anticipate 
how the metabolism of PUFAs and formation of 
various eicosanoids occur and at times difficult 
to foresee and predict the products that are likely 
to be formed from various PUFAs under different 
physiological and pathological conditions. Despite 
this complex interaction among various n-3 and 
n-6 fatty acids, certain generalizations are possi-
ble, though arriving at some of these conclusions 
needs to be done rather cautiously. This implies 
that in all clinical conditions multiple changes in 
the concentrations of plasma and/or tissue fatty 
acid profile may occur and no single fatty acid 
could serve as a marker of any particular disease. 
For instance, it was reported that high proportions 
of palmitic acid (16:0), palmitoleic acid (16:1), and 
DGLA, and a  low proportion of LA, AA, EPA and 
DHA, occur in the plasma/serum in type-2 diabe-
tes [3, 34, 38, 39], myocardial infarction [40, 41], 
stroke [42], left ventricular hypertrophy [43], and 
metabolic syndrome [44, 45]. Increased activity 
of SCD (stearoyl CoA desaturase, also known as 
delta-9-desaturase, which desaturates saturated 
fatty acids (SFA) to form monounsaturated fatty 
acids (MUFA)), and low Δ5 activity have also been 
described to be independently associated with 
increased risk for cardiovascular diseases, insulin 
resistance and low-grade systemic inflammation, 
and cardiovascular and total mortality [46, 47]. 
Warensjo et al. observed an independent asso-

ciation between desaturase activity indices and 
mortality risk. They suggested that altered endog-
enous desaturation might contribute to the risks 
[47]. Others have suggested that a defect in Δ6 and 
Δ5 may be a factor in the initiation and progres-
sion of insulin resistance and atherosclerosis and 
their associated diseases such as obesity, diabe-
tes mellitus, and hypertension [3, 40, 48, 49]. The 
complexity of the involvement of PUFAs in various 
diseases is further evident from the studies with 
regard to the role of linoleic acid (LA, 18:2 n-6) 
and its metabolites specifically in cardiovascular 
diseases. For instance, studies performed both in 
experimental animals and humans in the early 
1950s and 1960s showed that increased intake of 
saturated fats increases plasma cholesterol levels 
and leads to the development of hypercholesterol-
emia, while enhanced intake of unsaturated fatty 
acids including LA reduces plasma and tissue cho-
lesterol levels [50–56].

Factors influencing the metabolism  
of essential fatty acids

It is well documented that various dietary and 
non-dietary factors modulate the metabolism of 
EFAs and consequently the formation of various 
eicosanoids. Some of these factors include: the 
ratio among various polyunsaturated fatty acids, 
antioxidants, phytochemicals, vitamins, minerals, 
hormones (especially estrogen, insulin, cortico-
steroids), gut microbiota, ethanol, oncogenic vi-
ruses, and genetics and age of the individual, and 
climactic temperature [57–62]. A brief description 
as to the way some of these factors influence EFA 
metabolism is given below (see also Figure 1). 

Modulators of desaturases 

It is well recognized that Δ6 and Δ5 desaturases 
are the rate-limiting factors in the production of 
long-chain metabolites of EFAs: LA and ALA [63–
65]. Hence, factors that influence the activities of 
desaturases are expected to alter the tissue levels 
of LA and ALA and their long-chain metabolites. 
Thus, several nutritional, hormonal, and genetic 
factors are able to determine the plasma and tis-
sue concentrations of various PUFAs as a result of 
their influence on the activity of desaturases [30, 
66]. Δ6 desaturase activity is upregulated by EFA, 
protein, insulin and dietary deficiency (calorie re-
striction), and downregulated by fasting, glucose, 
fructose, glycerol, EFA excess, metabolic hormones 
(other than insulin), ethanol and increasing age 
[29, 30, 57–66]. Δ5 desaturase responds similarly 
to metabolic hormones, but in the event of EFA de-
ficiency it is downregulated rapidly and is upregu-
lated with increase in the activity of Δ6 desaturase, 
showing a delayed response. On the other hand, 
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in response to an increase in EFA consumption (or 
increased release of EFAs from the cell membrane 
pool) the activity of Δ6 desaturase declines where-
as that of Δ5 desaturase is increased [66, 67]. Once 
the feedback regulation comes into play, the activi-
ties of both the desaturases are restored to normal 
[30]. This may explain why a rapid increase in the 
consumption of w-6 fatty acids by subjects who 
are deficient in these fatty acids (n-6 PUFAs) results 
in a sudden surge in the features of inflammation 
that could be attributed to increased formation of 
pro-inflammatory eicosanoids derived from n-6. 

Males and females seem to differ in their ability 
to synthesize long-chain w-3 fatty acids from ALA 
as a result of the action of estrogen and testoster-
one on its (ALA) metabolism. Estradiol increases, 
whereas testosterone decreases the production of 
long-chain metabolites derived from LA and ALA 
[20, 21]. It has been reported that the w-3 path-
way is more responsive to hormonal treatment 
than the w-6 pathway; relatively low concentra-
tions of estradiol increased the synthesis of EPA 
and docosapentaenoic acid (DPA) from ALA, but 
larger concentrations of estradiol were required to 

Figure 1. Scheme showing the metabolism of essential fatty acids, their role in inflammation and factors that 
influence desaturases
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increase the AA levels [68]. A lower partitioning of 
ALA for b-oxidation and a  lower use as an ener-
gy source in women compared with men has also 
been reported, which may enhance its availability 
for the formation of EPA and DHA [69]. This could 
be one specific reason why greater DHA synthe-
sis has been reported in women than men, which 
may result in higher plasma DHA concentration in 
women [70]. In females, the conversion from ALA 
to DHA may be as high as 9%, whereas for males 
it may be ~0.5–4% [70]. Growth hormones have 
been shown to increase the Δ6 activity and con-
sequently enhance the tissue levels of respective 
PUFAs in the tissues [71].

Vitamin A  has been shown to downregulate 
the expression of Δ5 [72]. In addition, some phyto-
chemicals, particularly curcumin and sesamin, also 
downregulate Δ5. But, surprisingly, both curcumin 
and sesamin suppressed desaturation of w-6 fatty 
acids but not of w-3 fatty acids [16, 73]. Curcumin 
is more effective than sesamin, while simultaneous 
use of both curcumin and sesamin had a greater 
suppressive effect on chain elongation, resulting in 
tissue accumulation of GLA and DGLA. In contrast, 
phytosterols enhanced the activity of Δ6, Δ5, and 
SCD [74]. Stearoyl CoA desaturase by virtue of its 
ability to introduce a double bond in SFA to form 
MUFA increases the unsaturation index and thus 
cell membrane fluidity (Figure 1). 

The effect of temperature on the activity of de-
saturases has been controversial, some reporting 
an increase in Δ6 activity at lower temperatures, 
while others report decreased activity [75–78]. It 
stands to reason to suggest that at low tempera-
tures, the activity of desaturases could be higher, 
since to maintain cell membrane fluidity in a cold 
climate higher concentrations of unsaturated fat-
ty acids are needed.

Arguably, one of the important factors that 
regulate the activity of desaturases is the cellu-
lar content of unsaturated fatty acids themselves. 
Under normal physiological conditions, cellular 
PUFA content is maintained within a narrow range 
by the activity of desaturases and elongases and 
their uptake and efflux. As expected, as is the case 
with the activity of many other enzymes in the 
cells, upregulation of the PUFA synthetic pathway 
occurs principally under conditions of deficiency 
while, as expected, downregulation of the desat-
urases and elongases occurs, rather quickly, once 
PUFAs have been replenished or provided [27, 67]. 

Other fatty acids

Although non-essential fatty acids can be syn-
thesized endogenously, some of them are consid-
ered conditionally essential and they influence 
EFA metabolism. For example, OA not only has 
regulatory functions but can also alter cellular fat-

ty acid composition in select organs [25]. Both sat-
urated and unsaturated fatty acids are essential 
components of the cell membrane and contribute 
to many cellular functions as well. Some of these 
include: coordinating the expression of proteins 
involved in lipid synthesis, transport, storage, 
degradation, and elimination to maintain a  nor-
mal physiological state [79, 80]. Several of these 
fatty acids function as ligands of nuclear and 
cell-surface receptors and thus maintain cellular 
homeostasis [26], by sensing cellular lipid levels 
and regulating gene expression to control lipid 
overload. The homeostatic role of lipids includes 
regulation of energy and glucose homeostasis 
through a  feedback regulation between the gas-
trointestinal tract and central nervous system in 
which fatty acids with 12 or more carbons seem to 
have an important role by regulating food intake 
[81]. This sensitive neuronal circuitry becomes in-
efficient in response to high-fat or inappropriate 
fat intake, which could be attributed to imbalance 
in the ingestion of specific fatty acids [82]. Palmit-
ic, lauric, and stearic acids stimulate the expres-
sion of mitochondrial uncoupling proteins, UCP2 
and UCP3, which reduce oxidative stress and are 
known to play a role in determining longevity of 
the organism [83]. 

Dietary composition of fatty acids (including 
w-6 and w-3) is reflected in tissue composition 
[84, 85], which may have a modulatory influence 
on cellular functions. Similarly, the total amount of 
dietary fatty acids (low-fat versus high-fat diets) 
influences fatty acid metabolism and tissue com-
position. For instance, consumption of low fat di-
ets seems to enhance plasma w-3 fatty acid levels, 
which could be due to the preferential metabolism 
of ALA [86]. Increased intake of a high fat diet, es-
pecially saturated fats, can be a risk factor for the 
development of hypertension [4]. Whether this 
increase in blood pressure due to high intake of 
saturated fats may be related to interference with 
the metabolism of essential fatty acids and/or an 
imbalance in the formation of their eicosanoid me-
tabolites remains to be established. Nevertheless, 
it is likely that the proportion of w-6 and w-3 fatty 
acids, saturated fats and concomitant consump-
tion of total protein and carbohydrate may all play 
a significant role in the pathobiology of hyperten-
sion and other cardiovascular diseases [87–92].

Antioxidants, phytochemicals, vitamins  
and minerals

Following the ingestion of fatty acids, they 
may undergo: (1) mitochondrial and peroxisomal 
b-oxidation for energy production, (2) free-radical 
mediated oxidation (chain reactions where one 
free radical can oxidize many lipid molecules),  
(3) free-radical independent, non-enzymatic oxi-
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dation, and/or (4) enzymatic oxidation to produce 
bioactive lipid products including long-chain fatty 
acids and various eicosanoids. Specific products 
are formed from each type of oxidation and spe-
cific antioxidants are known to modulate specific 
reaction [9, 93]. This may explain the regulatory 
or modulatory role played by several antioxidants, 
phytochemicals, vitamins, and minerals in the me-
tabolism or bioavailability of various fatty acids. 

Vitamin E and C work synergistically to prevent 
lipid peroxidation [9, 94]. Both cyclooxygenase-2 
(COX-2) activity and lipid peroxidation increase 
with age, which could be inhibited by vitamin E 
[95–100]. PGE2, a product of COX-2 activity, is an 
immunosuppressor and so it is anticipated that 
vitamin E may be able to restore immune dys-
function and increase T-cell-mediated immune 
function [98, 99]. g-Tocopherol (gT) is a more ef-
fective inhibitor of PGE2, LTB4, and tumor necrosis 
factor-a (TNF-a) than a-tocopherol (aT) [100]. It is 
worth noting that with advancing age, production 
of pro-inflammatory cytokines IL-6 and TNF-a in-
creases, while both vitamin E and PUFAs and their 
eicosanoid products inhibit their (IL-6 and TNF-a) 
synthesis [98–102]. On the other hand, increased 
production of free radicals and the lipid peroxida-
tion process, which increase with aging, may have 
an impact on the availability of PUFAs, since the 
latter are easily peroxidized. Thus, there appears 
to be close but intricate and complex interaction 
among vitamin E, PUFAs, eicosanoids, lipid perox-
idation and cytokines that ultimately may impact 
the immune response and various aging associ-
ated diseases such as type 2 diabetes mellitus, 
hypertension, metabolic syndrome, Alzheimer’s 
disease and cancer. Thus, vitamin E requirements 
are partially dependent on PUFA consumption, 
partly because PUFAs reduce intestinal absorption 
of vitamin E [10]. In this context, it is important 
to note that the results of the GISSI trial [103] re-
ported that vitamin E supplementation does not 
prevent myocardial infarction and yet other stud-
ies showed that both b-carotenoids and vitamin 
A  intake may actually increase the incidence of 
cancer in the high-risk population [104]. These re-
sults suggest that the timing, dose, and form of 
administration of anti-oxidants may produce un-
expected and contradictory results. Studies have 
also shown that vitamin A  can modulate PUFA 
metabolism and formation of various eicosanoids 
[105, 106]. Folic acid stimulates the formation of 
long-chain n-3 fatty acids [107], which may ex-
plain its importance in brain growth and function 
for which even PUFAs are essential.

Phytochemicals stimulate the synthesis of de-
toxifying and antioxidant enzymes and may also 
modulate plasma membrane structure and act as 
ligands to certain cellular signaling molecules [13, 

108–110]. For instance, curcumin accumulates in 
the plasma membrane and alters thickness, flu-
idity, and elasticity, whereas resveratrol increases 
membrane fluidity [13]. 

Melatonin, the circadian rhythm regulator, has 
the ability to counteract lipid peroxidation in biolog-
ical membranes and serve as an antioxidant [111]. 
Long-term melatonin administration reduced hyper- 
insulinemia and improved the altered fatty-acid 
compositions in type 2 diabetic rats via the resto-
ration of Δ5 activity, indicating that melatonin can 
modulate essential fatty acid metabolism [112].

The influence of minerals and trace elements 
on AA metabolism and eicosanoid production is 
complex [19]. Selenium, an important component 
of the Se-dependent enzyme glutathione perox-
idase (Se-GSHpx), functions synergistically with 
vitamin E as an antioxidant and thus may pre-
vent lipid peroxidation and alter the production of 
eicosanoids. Zinc, cadmium, silver, iron, and mer-
cury are inhibitors of Se-GSHpx, which is known 
to catalyze AA metabolism to form PGs, TXs, and 
LTs. Free radical generated during the formation of 
various eicosanoids themselves may have a feed-
back regulatory function on their (eicosanoids) 
formation [113–115]. Thus, while considering the 
metabolism of PUFAs and the formation of vari-
ous eicosanoids, one needs to take into account 
the presence, actions and concentrations of var-
ious antioxidants, phytochemicals, vitamins, and 
minerals. 

The biological role of lipid peroxides is com-
plex, especially with regard to their role in patho-
logical processes and diseases such as diabetes, 
atherosclerosis, inflammation, aging, and isch-
emia-reperfusion injury [9, 96]. It is believed that 
low to moderate levels of lipid peroxides are es-
sential for cellular functions by triggering adaptive 
responses that are necessary to prevent cytotoxic 
actions of oxidative stress by upregulating protec-
tive antioxidant defenses [9, 60, 61, 113–115]. 

Gut microbiota

Gut microflora can influence lipogenesis and 
plasma lipopolysaccharide levels [116]. A high-fat 
diet may have an unfavorable effect on gut mi-
croflora [117], while the gut microbiota influences 
fat composition of host tissue. For instance, ad-
ministration of Bifidobacterium breve with linoleic 
acid increased the tissue composition of conjugat-
ed-linoleic acid and w-3 fatty acids EPA and DHA 
[118]. The effect of other PUFAs on gut microbiota 
remains to be determined. 

Gender, genetics and aging

Sex hormones can alter metabolism of dietary 
fats [20, 21], while dietary fats modulate the syn-
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thesis of sex hormones and the associated recep-
tor organization [99, 119]. Higher PUFA adminis-
tration resulted in lower activity of steroidogenic 
enzymes and low levels of androgens as com-
pared to MUFA or SFA administration. w-3 fatty 
acids, particularly DHA, caused less androgen 
production than w-6 fatty acids; and w-6 fatty ac-
ids caused less androgen production than MUFA 
or SFA (w-3 > w-6 > MUFA = SFA) [120]. For this 
alteration in the androgen levels to occur, fatty ac-
ids need to be administered for at least 3 weeks, 
while feeding fats for 6 weeks led to a decrease 
in androgen, implying that adapter mechanisms 
come into play when fats are fed for longer pe-
riods [121]. A  similar relationship that has been 
shown by androgen production seems to exist be-
tween estrogen and PUFAs [122]. Both estrogen 
and PUFAs enhance nitric oxide synthesis, sup-
press the production of pro-inflammatory IL-6 and 
TNF-a production and have antioxidant-like and 
anti-atherosclerotic properties, and showed neu-
roprotective actions [122]. Men and women dif-
fer in storage, mobilization, and oxidation of fatty 
acids [123, 124], and gene expression relevant to 
fatty acid metabolism [125–127].

Genetic variations in the activity of delta 
desaturases and elongases can influence me-
tabolism and therefore the requirement and 
concentrations of cellular lipids [23]. Similarly, 
polymorphisms in apolipoprotein E and peroxi-
some-proliferator-activated receptor-g (PPAR-g) 
genes alter the response to dietary fats [126]. On 
the other hand, dietary fats can alter the expres-
sion of several genes. For instance, PUFAs sup-
press lipogenic, glycolytic, and cholesterologenic 
genes, but enhance the expression of genes of 
the b-oxidation pathway [127, 128]. The PUFAs 
modulate gene expression by interacting with nu-
clear receptors – hepatic nuclear factor (HNF-4), 
liver X receptors (LXR), and PPAR a, b, d, and g 
– and by regulating transcription factor sterol reg-
ulatory element-binding proteins (SREBP) 1 and 2 
[128]. SREBPs, suppressed by PUFAs, are key reg-
ulators of cholesterol, fatty acid, and triglyceride 
synthesis. Linoleic acid and AA are potent PPAR 
ligands, producing a rapid increase in expression 
of genes involved in lipid oxidation.

Phytochemicals bind to the cell surface and 
nuclear receptors as ligands. Curcumin, capsa-
icin, ginsenosides, hesperidin, and resveratrol are 
PPAR-g ligands, attenuate cytokine production and 
thus suppress inflammation [18]. Phytosterols al-
ter expression of intestinal and hepatic genes 
[129]. Since nutrients are able to alter a variety of 
genes, it is tempting to suggest that fine tuning of 
the ingestion of various nutritional factors could 
be employed to optimize gene expression and 
thus prevent several diseases. 

It is believed that with advancing age mem-
brane fluidity declines, lipid peroxidation increas-
es and so also does oxidative stress. Aging is one 
of the factors that impact the activity of desatu-
rases, leading to an alteration in the formation of 
long-chain metabolites of EFAs: LA and ALA. Thus, 
this could be a compensatory phenomenon – as 
oxidative stress increases with age, the activity of 
desaturases changes and the tissues try to main-
tain near normal amounts of PUFA though they 
could form substrates for the peroxidation pro-
cess. But, this delicate balance between oxidative 
stress and peroxidation on one hand and the ac-
tivity of desaturases on the other hand may lead 
to significant alterations in cell membrane fluid-
ity, formation of various eicosanoids, and conse-
quently changes in the formation of cytokines – 
events that could have a  profound influence on 
the immune response and inflammation. Calorie 
restriction enhances the activity of desaturases, 
which could be considered as yet another com-
pensatory phenomenon since with aging food 
intake decreases. Since calorie restriction also ex-
tends life span, it is tempting to suggest that the 
close interaction(s) among oxidative stress of ag-
ing, lipid peroxidation, activity of desaturases, for-
mation of various eicosanoids, calorie intake, pro-
duction of cytokines and consequent alterations 
in inflammation and immunity may be relevant to 
the involvement of these changes in a variety of 
diseases. 

It has been suggested that a decline in brain 
DHA content with age is associated with increased 
lipid peroxidation [130] that may lead to impaired 
cognitive function as a result of neuronal apopto-
sis of the cerebral cortex and hippocampus [131]. 
Hence, increased consumption of DHA (in the 
form of fish oil) could be of benefit in dementia 
of aging, Alzheimer’s disease and depression. This 
suggestion looks paradoxical since one would ex-
pect that increased consumption of DHA may en-
hance the lipid peroxidation process and enhance 
oxidative stress. But, in practice enhanced DHA 
consumption failed to increase oxidative stress 
in humans [132, 133], implying that the lipid per-
oxidation process does not just depend on the 
amount of unsaturation and is not a non-specific 
process but could be a specific enzymatic process 
that depends on local cellular integrity, function, 
and the necessity of eicosanoids and other prod-
ucts for various physiological and pathological 
processes. 

Conclusions

It is evident from the preceding discussion that 
PUFAs not only form an important constituent of 
the cell membrane but also play an important role in 
inflammation and immunity. The effect of PUFAs on 
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inflammation and immunity depends on the prod-
ucts formed from them. The exact mechanisms that 
determine what types of products are derived from 
various PUFAs – pro-inflammatory or anti-inflam-
matory – is not clear. Both PUFAs and the products 
formed from these fatty acids may ultimately deter-
mine the initiation, continuation and/or resolution 
of inflammation and the magnitude and type of im-
mune response [134]. Some, if not all, of the actions 
of PUFAs and their products on inflammation and 
immunity could be attributed to their action on NF-
kB, PPARs and other transcription factors. 

Though it is not yet certain, it is likely that cellu-
lar stores of PUFAs and phytochemicals and other 
co-factors that alter fatty acid and eicosanoid me-
tabolism play a  significant role in several disease 
processes. It is possible that a sudden withdrawal 
of or alteration in the proportion of intake of differ-
ent types of PUFAs may result in a sudden surge in 
the production or inhibition of certain eicosanoids 
that may result in unrestrained or significant alter-
ations in production/suppression of cytokines and 
gene(s) expression that may result in significant 
alterations in the physiological or pathological pro-
cesses including changes in LDL, HDL and cholester-
ol [135–137]. Such sudden and, sometimes, even 
gradual and unanticipated changes in the concen-
trations of various PUFAs, eicosanoids, cytokines, 
oxidative stress, HDL (may make HDL dysfunction-
al), LDL, cholesterol, triglycerides and other bioac-
tive molecules may render the host vulnerable to 
infections, myocardial infarction, stroke, and other 
diseases and their complications [138–157].

In view of this, it is essential to determine the 
individual necessity of various monounsaturat-
ed, w-6, w-3 and other fatty acids, antioxidants, 
and phytochemicals and administer them accord-
ingly. Such an individualized approach may be 
more fruitful in tackling several diseases in which  
PUFAs are believed to play a significant role. De-
velopment of such personalized dietary lipid pro-
grams for different types of subjects depending on 
their age, gender, dietary practices, environmental 
factors (such as temperature, season, etc.), hor-
monal status, stress and strain of life and other 
life style factors (such as exercise, etc.) and genet-
ic background is probably necessary and import-
ant to derive the best out of PUFAs, phytochem-
icals, vitamins and other co-factors for optimum 
health and to ward off diseases. 

In this context, it is noteworthy that some of 
the beneficial actions of statins could be brought 
about by PUFAs [158] and implies that a combina-
tion of statins and PUFAs may be more beneficial 
to patients with hyperlipidemias including those 
who have statin intolerance [159].

Such a dietary program should also take into 
consideration the necessity of saturated, mono-

unsaturated, and polyunsaturated fatty acids, 
phytochemicals, antioxidants, and minerals, such 
that the body tissues would have access to all 
the required raw chemicals/ingredients to form 
the beneficial bioactive compounds to optimize 
health. 
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